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Abstract
We consider classes of both discrete time (parallel updating) and continuous
time (sequential updating) interacting particle systems in the weak coupling
regime. We set up a perturbation analysis for the spacetime distributions
around the uncoupled dynamics and we construct the Gibbsian potential for
the time-evolved measures.

PACS numbers: 05.45−a, 02.50.Ey, 05.40.−a, 45.50.−j, 82.20.Kh

1. Introduction

Interacting particle systems are global Markov processes for spatially extended systems. With
each site of a regular lattice, a (spin) variable with a finite number of possible values is
associated. In the course of time, each spin is updated according to the (previous) values of
itself and its neighbouring spins. The updating can be parallel in discrete time steps (the case
of probabilistic cellular automata, PCA) or sequential in continuous time. The dynamics is
fixed by giving the updating rule. That can be done in terms of rates (in continuous time) or
in terms of transition probabilities (in discrete time). Initial data are specified in the form of a
fixed initial spin configuration or, more generally, are given in terms of an initial probability
measure µ = µ0 on the spin configurations. In finite volume, extra boundary conditions must
be obeyed. At a later time t > 0, the time-evolved measure µt is a solution of the associated
Fokker–Planck equation. Basic references include [3, 6, 13]. Such dynamics are often used
in studies of equilibrium and nonequilibrium systems but they are applied in an even wider
variety of problems for simulation purposes.

We say that the interacting particle system is weakly coupled when the influence in
updating from neighbouring spins is small. That means that we perturb around the case of
independent updating where we have an infinite collection of uncoupled Markov chains. This
should not be confused with the case where the system has transition rates (probabilities)
with weak memory which could be called the regime of high noise. The difference is that, in
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our case, the self-coupling of the spin to its previous state can be arbitrarily large. This will
prove important in applications to continuous time models. After all, in continuous time the
spin takes the same value for possibly very long times. In other words, the coupling in the
‘vertical’ temporal direction is strong whereas the ‘horizontal’ spatial coupling is sufficiently
weak. In this respect, the present paper differs not only from the perturbation analysis in
[10] (their theorem 1 in section 7.5, because we do not perturb around a spacetime product
measure) but also from that in [2] (because we treat continuous time). For similar results,
see [11]1.

The main question of the present paper is to identify sufficient conditions for which the
time-evolved measure is Gibbsian for all (even infinite) times. In particular, is it possible to
construct a uniformly absolutely summable interaction potential describing the time-evolved
measure in the weak coupling regime? It is well documented that various quite natural
transformations of Gibbs measures can give rise to non-Gibbsian measures, see e.g. [15]; ones
for which no suitable sufficiently local interaction potential can be given except perhaps in
the extended framework of weakly Gibbsian measures, see e.g. [8]. As such, it is not at all
clear whether the transformation µ0 → µt gives rise to a well-behaved effective potential
for µt even when the dynamics is strictly local and µ0 is Gibbsian. Note for example that
in discrete time, for PCA with a local updating and when starting from a fixed configuration,
at any fixed time t, any two spins that are sufficiently separated are in fact independent; it is
far from obvious to imagine an interaction potential for µt that produces such an effect with
immense cancellations for the correlation functions in the corresponding Gibbs distribution
µt . We refer to [1] for an example where such a Gibbs measure is even Markovian, that is, it
is associated with a nearest neighbour interaction.

On the other hand, one may be tempted to think that Gibbsianness is automatically
obtained in the case of weak coupling. This is not correct: it is very much possible to find very
weakly coupled dynamics and initial data for which the time-evolved measure is not Gibbsian
for possibly an infinite time-interval. The easiest counterexample is that where the dynamics
consists in fact of independent spin-flips (a so called infinite temperature Glauber dynamics)
started from a low temperature phase of the standard ferromagnetic Ising model on the square
lattice. As can be easily derived, see [14, 15], there is a finite time after which the time-evolved
measure µt is no longer (ever) Gibbsian. In this way, the present paper is complementary to
[14] and at the same time it gives a systematic treatment of various weak coupling spacetime
expansions that are also used in [14]. The present paper is also an improvement on [9] where
much of the same was attempted but containing important gaps both in formulation and in
proofs. On the other hand, the set-up below gives a fully rigorous and detailed account of
perturbation theory in the weak coupling regime of more general classes of interacting particle
systems. The main result is a systematic description of the effective potential at any fixed
time.

2. Plan

The paper is divided into two parts: section 3 deals with discrete time whereas section 4 treats
the case of continuous time. They are not independent. The beginning of section 4 takes the
continuous time limit of PCA. That is why the expansion for PCA in section 3 is done in such
a way that it survives the limit where time becomes continuous. Moreover, many of the ideas
and the techniques in the proofs of section 4 have analogues in discrete time.

1 I Ignatiouk and V Malyshev have generalised these results for countable weakly interacting Markov chains by
using the method of cluster expansion proposed by Pirogov and by the method of Lyapunov functions (1987).
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The main results for PCA are collected in theorems 3.6 and 3.8. The first one deals with
initial configurations that are fixed and the second one takes high temperature Gibbs measures
as the initial condition. They both state the Gibbsian character of the time-evolved measure
in the weak coupling regime. For continuous time, there is a first theorem 4.2 where the limit
from PCA to spin-flip dynamics is discussed. The potential in continuous time is obtained
as its limit for discrete time approximations. Finally, the more general result for continuous
time models concerning Gibbsianness is contained in theorem 4.4. The proofs of the various
theorems are each time obtained from combining various lemmas. As already mentioned in
the introduction, the idea is to set up each time a spacetime expansion around the distribution
obtained from the uncoupled dynamics. The simplest presentation of how this works can
already be read in section 3.3.

3. Probabilistic cellular automata

A discrete time version of interacting particle systems is probabilistic cellular automata (PCA).
These systems work with parallel updating rules. The weakly coupled dynamics gives rise
to a spacetime distribution that is a small perturbation around a family of uncoupled one-
dimensional lattice systems. Using the technique of cluster expansions,we make a perturbation
expansion around that uncoupled system.

3.1. Notation

We restrict here only to models on the regular hyper-cubic lattice Z
d with the single site

configuration space S = {−1,+1}. The configuration space of the model in a volume � ⊂ Z
d

is �� = S� and we reserve the letters η, ω, . . . to denote its elements. For any configuration
η ∈ ��, we write η(x) and η(�′) for the restriction of η to the site x ∈ � and to the set
�′ ⊂ �, respectively. Further, we reserve the symbols η•, ω•, . . . to denote the spacetime
paths, i.e. the elements of the set �N

�. Given a path η•, we write ηk for the configuration at
time k ∈ N. For any finite time n ∈ N, we also introduce the shorthand �n = �× {1, . . . , n}
for spacetime volumes and �n

� = �
{0,...,n}
� for sets of finite time paths. If � = Z

d , then the
subscript specifying the volume will be omitted and we will only write �,�n, . . .. A set
� ⊂ Z

d is called connected if it cannot be written as a union of two non-empty sets�1 and�2

such that d(�1,�2) > 1 in the metric d(x, y) = maxi|xi−yi|. A function f : �→ R is said
to be local if there exists a finite setD ⊂ Z

d such that f (η) = f (η′) whenever η(D) = η′(D).
The smallest such D is called the dependence set and it is denoted by Df . We also use the
symbol L for the set of local functions; note that L is a dense subset of the set of continuous
functions C(�) in the uniform topology.

The PCA is a discrete time Markov process σ• on� and we use the symbol P to denote its
path-space measure. It is defined via transition probabilities px(a | η), x ∈ Z

d , of finding the
spin a ∈ S at the site x provided that the configuration at the previous time was η. The obvious
conditions are px(a | η) � 0 and

∑
a∈S px(a | η) = 1 for every η. Moreover, we require the

transition probabilities to be translation-invariant2 and local. The latter means that there exists
a finite set B ⊂ Z

d , |B| = b, such that px(a | η) depends only on the restriction η(τx(B)) with
τx being the shift map. At any time, all spins are simultaneously and independently updated,
i.e. the process is fully introduced by the conditional probabilities, formally,

P(σk = η′ | σk−1 = η) =
∏
x∈Z

d

px(η
′(x) | η). (3.1)

2 The restriction to translation-invariant models only simplifies notation and it is not essential at all.
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Indeed, the last formula together with an initial condition uniquely defines P since the process
is to be Markovian. In particular,

P(σn = η′ | σ0 = η) =
∑
η•∈�n

η0=η,ηn=η′

n∏
k=1

P(σk = ηk | σk−1 = ηk−1). (3.2)

We construct finite volume approximations of the process. For a finite set � ⊂ Z
d , let

a PCA be given as a Markov chain on ��, via transition probabilities p�
x,k(a | η). As noted

before, we also allow them to depend on time. The updating rules for the PCA in the volume
� are

P
�(σk = η′ | σk−1 = η) =

∏
x∈�

p�
x,k(η

′(x) | η). (3.3)

Similarly, in analogy with (3.2), the sum goes only over paths from the set �n
�. Let �∗ denote

the set of all sites x ∈ � such that τx(B) ⊂ �. The PCA in the volume � will be called an
approximant of the infinite volume process iff p�

x,k(a | η) = px(a | η) for any x ∈ �∗ and
any a ∈ S, η ∈ ��. Note that this construction of finite-volume approximants covers a wide
variety of boundary conditions, including fixed and free ones. A generalization also covering
the periodic boundary conditions is straightforward.

3.2. Product dynamics

In order to study the PCA through a perturbation expansion, we need some reference process.
For weak coupling, the most natural reference dynamics is provided by the product of ‘single
site’ dynamics. We can use the formalism introduced in the last section and define it via the
transition probability

p0
x(a | η) = P0

η(x),a (3.4)

where P0 is a stochastic matrix on S. Its general form is

P0 =
(

1− ε+ ε+

ε− 1− ε−

)
0 � ε± � 1. (3.5)

Let us introduce the notation 2ε = ε+ + ε− and ε0 = min{ε+, ε−}. Obviously, the path-space
measure now has the form P

0 =⊗
x∈Z

d P
0
x and

P
0
x(σn(x) = b | σ0(x) = a) = (P0)nab. (3.6)

It is suitable to split the matrix P0 into two parts,

P0 = H + R (3.7)

where H is a stochastic matrix representing a ‘no memory’ process with the same invariant
measure as P0. So, it has the form Hab = hb, where h is a normalized solution of the equation∑

a haP0
ab = hb. Under the assumption ε > 0, the invariant measure is unique and the matrix

H is

H = 1

2ε

(
ε− ε+

ε− ε+

)
. (3.8)

The matrix H obviously satisfies the conditions Hn = H and HP0 = H. Moreover, the
orthogonality relations HR = RH = 0 hold true and, as a consequence, (P0)n = H + Rn. By
using the explicit formula

Rn = 1

2ε

(
ε+(1− 2ε)n −ε+(1− 2ε)n

−ε−(1− 2ε)n ε−(1− 2ε)n

)
(3.9)
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we immediately obtain the following elementary relations which will prove useful in the study
of the convergence of cluster expansions:

min
a,b∈S

(P0)nab =
ε0

2ε
[1− (1− 2ε)n] (3.10)

and ∑
a∈S

∣∣Rn
ab

∣∣ = (1− 2ε)n. (3.11)

It is also useful to express the transition probabilities in the ‘Gibbs form’:

Lemma 3.1. The transition probabilities are

(P0)nab =
1

zna
e(h+δhna)b (3.12)

where

h = 1

2
log

ε−
ε+

δhna =
a

2
log

1 + e−2ha(1− 2ε)n

1− (1− 2ε)n
(3.13)

and zna is the normalization factor.

3.3. Perturbation expansion

We expand the general PCA in any volume � around a product dynamics and write the
transition probability in the form

p�
x,k(a | η) = p0

x(a | η) + β�
x,k(a | η). (3.14)

Due to the properties of p� and p0, the perturbation β� is local and satisfies the condition∑
a∈S

β�
x,k(a | η)Hab = hb

∑
a∈S

β�
x,k(a | η) = 0. (3.15)

We define the norm of β� by

‖β�‖ = sup
a∈S
η∈��

sup
x∈�
k∈N

∣∣β�
x,k(a | η)

∣∣ . (3.16)

As we will see below, the expansion makes good sense provided that ‖β�‖ � ε0. Towards the
end of this section, let an infinite-volume process be fixed and we deal with an approximant
in a finite volume �.

Substituting (3.14) into (3.3) and introducing the simplified notation

P
�,n
η,η′ = P

�(σn = η′ | σ0 = η) (3.17)

we can subsequently write

P
�,n
η0,ηn

=
∑
η•∈�n

�

n∏
k=1

∏
x∈�

[
p0
x(ηk(x)

∣∣ ηk−1) + β�
x,k(ηk(x)

∣∣ ηk−1)
]

=
∑
!⊂�n

∑
η•∈�n

�

∏
(x,k)∈!

β�
x,k(ηk(x) | ηk−1)

∏
(x,k)∈�n\!

P0
ηk−1(x),ηk(x)

=
∑
!⊂�n

"�,nη0,ηn
(!)

(3.18)

where both sums over paths are restricted to fit the fixed configurations η0, ηn. We call
any subset ! of the spacetime �n a set of interaction points and we have introduced its
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un-normalized weight, "�,nη0,ηn
(!) = "(!), using the shorter notation whenever no confusion

arises. We also define the support, !
¯

, as the set of all sites x ∈ Z
d such that there exists a

point (x, k) ∈ !. Further, the set, P(!), is defined by P(!) = ∪x∈!
¯
τx(B).

Since for the reference process (P0)nη,η′ = "nη,η′ (∅), we can relate the transition
probabilities for both processes and write the perturbation expansion in the final form

P
�,n
η,η′

(P0)nη,η′
=

∑
!⊂�n

"̄
�,n
η,η′ (!) (3.19)

where the (normalized ) weight of sets of interaction points is given by

"̄(!) = "(!)

"(∅) . (3.20)

If P(!) ⊂ �, then it follows from (3.18) that "̄�,nη,η′ (!) does not depend on � and depends
only on the restrictions η(P(!)), η′(P(!)). We define the set ! to be connected iff we cannot
write it as a union of two non-empty sets, ! = !1 ∪ !2, such that P(!1) ∩ P(!2) = ∅. Any
set ! may be uniquely split into the family of its maximal connected components, ! = {γi},
which we call polymers; we write Kn

� for the set of all polymers in the spacetime volume �n.
By using formulae (3.18) and (3.20), one can easily check the factorization property

"̄(!) =
∏
i

"̄(γi) (3.21)

where the product runs over all connected components of !. As a result, we have rewritten
the LHS of (3.19) in the form of a standard polymer model, see e.g. [5] for details. Any set of
polymers, C, will be called a cluster, whenever it cannot be written as a union, C = C1 ∪ C2, of
two non-empty sets such that P(γ1) ∩ P(γ2) = ∅ for any γ1 ∈ C1 and γ2 ∈ C2. We introduce
the symbol P(C) = ∪γ∈CP(γ ) and use Cn

� to denote the set of all clusters. Equation (3.19)
may be rewritten in the form of the cluster expansion

log
P
�,n
η,η′

(P0)nη,η′
=

∑
C∈Cn

�

$
�,n
η,η′(C). (3.22)

Our basic result collecting the properties of the cluster weights is the subject of the following
lemma:

Lemma 3.2. For any a � 0, there exists a constant τa > 0 such that the following is true. If
� is finite and the condition ‖β�‖ � τaε0 is satisfied, then

(1) The cluster weights satisfy the bound

sup
x

sup
n

∑
C∈Cn

�

x∈P(C)

ea|P(C)| sup
η,η′

∣∣$�,n
η,η′(C)

∣∣ � 1. (3.23)

(2) The weight $�,n
η,η′ (C) does not depend on � whenever P(C) ⊂ �. Further, it only depends

on η(P(C)), η′(P(C)).

Proof. It follows from lemma 3.9 in section 3.6 by using a standard statement about the
convergence of cluster expansion, see [5]. �
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3.4. Fixed initial data

In this section, we study for weakly coupled PCA the Gibbsian structure of the marginal
measures at each fixed time. We first establish the existence of a ‘boundary condition
independent’ thermodynamic limit and then show the Gibbsianity of marginals at all times.
The cluster expansions immediately provide us with an exponentially damped potential (in the
diameter) for the marginal measures.

3.4.1. Thermodynamic limit. Given an approximant in a finite volume �, we introduce the
symbol µ�,n

η for the marginal of the path-space measure at time n. Let f : �→ R be a local
function with the dependence set Df ⊂ �. Then

µ�,n
η (f ) =

∑
η′∈��

f (η′)P�,n
η,η′ =

∑
!⊂�n

∑
η′∈��

f (η′)"�,nη,η′ (!) (3.24)

where we have used the polymer representation (3.18). For any set of interaction points !, we
introduce the root set R(!) as the set of all points (x, k) ∈ ! for which there does not exist
any (y, l) ∈ ! such that l > k and x ∈ τy(B). Further, the symbol R(!) denotes the support
of R(!). We also use a natural generalization for clusters, R(C) = ∪!∈CR(!).

We start with the following two lemmas. The first is an immediate consequence of
equation (3.15) and the second follows from the definition of the cluster weights, see [5].

Lemma 3.3. If R(!) �⊂ Df , then
∑

η′∈��
f (η′)"�,nη,η′ (!) = 0.

Lemma 3.4.
∑

!⊂�n

R(!)⊂Df

"̄
�,n
η,η′ (!) = exp

[∑
C∈Cn

�

R(C)⊂Df

$
�,n
η,η′ (C)

]
.

Using the above lemmas, we obtain the following cluster representation of expectations:

µ�,n
η (f ) =

∑
!⊂�n

R(!)⊂Df

∑
η′∈��

f (η′)"�,nη,η′ (!)

=
∑
η′∈��

f (η′)(P0)nη,η′
∑
!⊂�n

R(!)⊂Df

"̄
�,n
η,η′ (!)

=
∑
η′∈��

f (η′)(P0)nη,η′ exp




∑
C∈Cn

�

R(C)⊂Df

$
�,n
η,η′(C)


 .

(3.25)

Given α � 1, we say that the approximant in � is an α-approximant whenever the inequality
‖β�‖ � α‖β‖ is true.

Proposition 3.5. Let ‖β‖ � α−1τε0, where τ may be chosen as a τa from lemma 3.2 for any
a > 0. Then for any initial configuration η ∈ � there exist measures µn

η such that3

lim
�

sup
n

sup
η

∣∣µ�,n
η (f )− µn

η(f )
∣∣ = 0 (3.26)

for any sequence of α-approximants and any local function f : �→ R.
3 We use the symbols lim� or lim�↑Z

d for the limit along a sequence of finite volumes, {�n}∞n=1, such that any finite

set A ⊂ Z
d is a subset of all �n except for a finite number of them.
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Proof. It is sufficient to prove that, for any local function f : �→ R, the sequence
{
µ�,n
η (f )

}
is Cauchy, uniformly in n and η. Let A, B be finite sets of sites, Df ⊂ A ⊂ B. By using
formula (3.25) we can write

∣∣µB,n
η (f )− µA,n

η (f )
∣∣ =

∣∣∣∣∣∣∣∣∣
∑
η′∈�B

f (η′)(P0)nη,η′


exp




∑
C∈Cn

B

R(C)⊂Df

$
B,n
η,η′(C)




− exp




∑
C∈Cn

A

R(C)⊂Df

$
A,n
η,η′(C)





∣∣∣∣∣∣∣∣∣

� 2‖f ‖ exp


sup

η,η′

∑
P(C)⊂A
R(C)⊂Df

∣∣$A,n
η,η′ (C)

∣∣



×


sup

η,η′

∑
P(C) �⊂A
R(C)⊂Df

∣∣$A,n
η,η′(C)

∣∣ + sup
η,η′

∑
P(C) �⊂A
R(C)⊂Df

∣∣$B,n
η,η′(C)

∣∣

 . (3.27)

To get the above inequalities, we first extended the configuration space to �B for both
expectations and then used lemma 3.2 to conclude $A,n

η,η′ (C) = $
B,n
η,η′ (C) whenever P(C) ⊂ A.

Finally, we used the inequality |ex − ey | � 2(|x| + |y|) for |x|, |y| small enough and the
normalization of P

0. By using lemma 3.2, we have the estimates

sup
η,η′

∑
P(C)⊂A
R(C)⊂Df

∣∣$A,n
η,η′ (C)

∣∣ � |Df | sup
x

sup
η,η′

∑
C∈Cn

A

x∈P(C)

∣∣$A,n
η,η′(C)

∣∣ � |Df | (3.28)

and

sup
η,η′

∑
P(C) �⊂A
R(C)⊂Df

∣∣$A,n
η,η′(C)

∣∣ � |Df | sup
x∈Df

sup
η,η′

∑
x∈P(C) �⊂A

∣∣$A,n
η,η′(C)

∣∣

� |Df | exp


−a inf

M conn
x∈M �⊂A

|M|

 sup

x

sup
η,η′

∑
x∈P(C)

ea|P(C)|
∣∣∣$A,n

η,η′ (C)
∣∣∣

� |Df | e−a dist (Df ,A
c) A↑Z

d

−→ 0 (3.29)

provided that a > 0 and ‖βA‖ � τaε0. Since the same argument can be used for the last sum
in (3.27) as well, we obtain

lim
A,B↑Z

d
sup
n

sup
η

∣∣µB,n
η (f )− µA,n

η (f )
∣∣ = 0 (3.30)

which finishes the proof. �

3.4.2. Potentials. The marginal measure µ�,n
η of a �-approximant may be written in the

Gibbs form

µ�,n
η (η′) = 1

Z�,n
η

e−H
�,n
η (η′) (3.31)
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where

H�,n
η (η′) =

∑
A⊂�

U�,n
η (A, η′) (3.32)

is the (finite-volume) Hamiltonian. The potential U� ≡ U�,n
η may be split into two parts, the

first, U 0, corresponding to the reference (single site) dynamics and the second, Ũ�, counting
the interaction in. By using lemma 3.1 and formula (3.22), we immediately read

U 0,n
η (A, η′) =

{−(h + δhnη(x)
)
η′(x) A = {x}

0 otherwise
(3.33)

and

Ũ�,n
η (A, η′) = −

∑
C∈Cn

�

P(C)∩�=A

$
�,n
η,η′ (C). (3.34)

Apart from the potentials corresponding to finite-volume approximants, we also define the
(infinite-volume) potential U = U 0 + Ũ , the interaction part of which is given by

Ũn
η(A, η

′) = Ũ�,n
η (A, η′) (3.35)

for any � such that A ⊂ �∗. Lemma 3.2 assures that the above potential is well defined and
uniformly bounded. Indeed, U 0 is clearly uniformly bounded for any n > 0 and inequality
(3.23) implies

sup
x

sup
n

∑
A�x

ea|A| sup
η,η′

∣∣Ũ n
η(A, η

′)
∣∣ � 1. (3.36)

The main goal of this section is to prove that the (infinite-volume) marginal µn
η is a

Gibbs measure with respect to the potential Un
η . Following a standard formalism (see [4]), we

assign to any finite set of sites , the specification (from now on we omit the indices n, η),
γ, : C(�)→ C(�),4 via

γ,f (ω) = 1

Zω
,

∑
σ∈�,

e−H,(σω)f (σω). (3.37)

Here we used the shorthand σω for the configuration σω(,) = σ , σω(,c) = ω(,c), the
symbol H, for the Hamiltonian

H,(σω) =
∑

A∩, �=∅
U(A, σω) (3.38)

and Zω
, for the corresponding partition function with the boundary condition ω. A probability

measure ν is said to be a Gibbs measure with respect to the potential U, whenever
νγ,(f ) = ν(f ) for any , finite and f ∈ C(�).

Theorem 3.6. Let the condition ‖β‖ � τaε0 be true with τa being the constant from
lemma 3.2 and a > 0. Then one has the following:

(1) For any η ∈ � and n > 0, the marginal µn
η is a Gibbs measure with respect to the

potential Un
η .

(2) The interaction part of the potential satisfies

sup
x

sup
n

∑
A�x

ea|A| sup
η

∥∥Ũn
η(A)

∥∥ � 1 (3.39)

where we used the notation ‖Ũ (A)‖ = supη′ |Ũ(A, η′)|.
4 For uniformly bounded potentials the specifications are quasi-local, yielding γ,f ∈ C(�) for f ∈ C(�). See [4]
for details.
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Remark 3.7. Note that the potential fulfils Un
η (A) = 0 whenever A is not a connected set.

Since diam A � |A| − 1 for A connected, it follows from the second statement that the
potential Un

η is exponentially damped with the constant a.

Proof. Statement (2) is equation (3.36). To prove the first statement, we will proceed along
the lines of [4]. We only need to establish the limit

lim
�

∣∣µ�γ,(f )− µ�(f )
∣∣ = 0 (3.40)

for every local function f and , finite set of sites. Then the equality µγ,(f ) = µ(f )

immediately follows from proposition 3.5 and the continuity of γ,f (see the note above),
proving µ is Gibbsian w.r.t. U.

To prove (3.40), we first assign to any (finite-volume) potential U� and , ⊂ � the
Hamiltonian H�

, and specification γ �
, : C(��) → C(��) via the obvious modification of

(3.38) and (3.37). One can easily check the equality µ�γ�
, = µ�. Then,∣∣µ�γ,(f )− µ�(f )

∣∣ = ∣∣µ�
(
γ, − γ �

,

)
f
∣∣ � ∥∥(γ, − γ �

,

)
f
∥∥

= sup
ω∈�

∣∣∣∣∣∣
∑
ξ∈�,

(
e−H,(ξω)

Zω
,

− e−H
�
, (ξω)

Z�,ω
,

)
f (ξω)

∣∣∣∣∣∣
� sup

ω∈�
sup
ξ∈�,

∣∣∣∣∣
(
Z�,ω
,

Zω
,

e(H
�
,−H,)(ξω) − 1

)
f (ξω)

∣∣∣∣∣
� ‖f ‖

∥∥∥∥∥Z
�,·
,

Z ·,
e(H

�
,−H,)(·) − 1

∥∥∥∥∥ .
It follows from statement (2) that∥∥H�

, −H,

∥∥ � ∑
A∩, �=∅
A�⊂�∗

‖U�(A,ω)− U(A,ω)‖

� |,| sup
x∈,

∑
A�x
A�⊂�∗

(‖U�(A)‖ + ‖U(A)‖) �−→ 0. (3.42)

Finally, using the inequality∥∥∥∥∥Z
�,·
,

Z ·,
− 1

∥∥∥∥∥ �
∥∥eH,−H�

, − 1
∥∥ � e‖H,−H�

, ‖ − 1 (3.43)

we immediately conclude that lim�

∥∥µ�γ,(f )− µ�(f )
∥∥ = 0 as required. �

3.5. High-temperature initial data

In this section, we generalize the results for the fixed initial data to allow weakly correlated
data. More precisely, we assume the initial condition to be a Gibbs measure corresponding to
an interaction that is exponentially damped as the diameter of the interaction set grows, and
show that theorem 3.6 keeps its validity.

Let λ =⊗
x λx be a product measure on �. We assume that the initial measure µ0 is a

Gibbs measure with the potential V and the a priori measure λ. By imposing free boundary
conditions (it plays no role in the argument), the finite-volume approximation in � is given by

µ�,0(dη) = 1

Z�
λ(dη) exp

(
−
∑
A⊂�

V (A, η)

)
. (3.44)
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Without making any restrictions, we will assume that V (A) = 0 whenever |A| = 1 or A is not
a connected set. The marginal measure µ�,n is then

µ�,n(η′) =
∫

µ�,0(dη)P�,n
η,η′ =

1

Z�

∑
!⊂�n

∫
λ(dη) e−

∑
A⊂� V (A,η)"

�,n
η,η′ (!). (3.45)

Since we stick to the high-temperature regime, the Mayer expansion of the potential part
proves useful and we can write

µ�,n(η′) = 1

Z�

∑
〈!,A〉

∫
λ(dη)"�,nη,η′ (!)

∏
A∈A

(
e−V (A,η) − 1

)
(3.46)

where the symbol A is used to denote a collection of sets and the sum runs over pairs of a set
of interaction points and a collection of sets of sites. Introducing the notation

νnη′(dη) =
λ(dη)(P0)nη,η′∫
λ(dη)(P0)nη,η′

(3.47)

we define the weight of the pair 〈!,A〉 by

w
�,n
η′ (〈!,A〉) =

∫
νnη′(dη)"̄

�,n
η,η′ (!)

∏
A∈A

(
e−V (A,η) − 1

)
. (3.48)

Equation (3.46) may now be rewritten in the form

µ�,n(η′) =
(

1

Z�

∫
λ(dη)(P0)nη,η′

) ∑
〈!,A〉

w
�,n
η′ (〈!,A〉) (3.49)

which is a generalization of formula (3.19). All geometrical notions introduced for interaction
sets may be naturally generalized to pairs. Given a pair 〈!,A〉, we define its support
〈!,A〉 = !

¯
∪ ⋃

A∈A A, the projection set P(〈!,A〉) = P(!) ∪ ⋃
A∈A and the root

set R(〈!,A〉) = R(!). The pair 〈!,A〉 is called a super-polymer whenever it cannot
be split into two pairs 〈!1,A1〉, 〈!2,A2〉 such that ! = !1 ∪ !2, A = A1 ∪ A2 and
P(〈!1,A1〉) ∩ P(〈!2,A2〉) = ∅. We denote the set of all super-polymers in the spacetime
volume �n by Kn

�. Obviously, any pair 〈!,A〉 may be viewed as a family of super-polymers
{〈!,A〉i} and the factorization of weights,

w
�,n
η′ (〈!,A〉) =

∏
i

w
�,n
η′ (〈!,A〉i ) (3.50)

takes place, explaining the above geometrical definitions. Further, the super-clusters are
introduced in the obvious way and we reserve the symbol Fn

� to denote the set of all super-
clusters in �n and generalize the geometrical notions to them in the natural way. Expanding
the sum over super-polymers, equation (3.49) reads

µ�,n(η′) = 1

Z�

∫
λ(dη)(P0)nη,η′ exp


∑

F∈Fn
�

2
�,n
η′ (F)


 (3.51)

where 2(F) is the weight of the super-cluster F . The Gibbs form of marginal (3.31), (3.32)
is established with the potential U� = U 0,n + Ũ�,n. Here U 0,n is the self-potential part
corresponding to the reference dynamics and independent initial data, and the interaction part
is

U�,n(A, η′) = −
∑
F∈Fn

�

P(F)=A

2
�,n
η′ (F). (3.52)
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In the same way, as in the last section, we use the symbols Un and Ũ n for the �-independent
potential and its interacting part, respectively.

Theorem 3.8. Given a > 0, there exist constants τ ′a, υa > 0 such that if the inequality

α‖β‖
τ ′aε0

+ sup
x

∑
A�x

eυa |A|
(
e‖V (A)‖ − 1

)
� 1 (3.53)

is true for some α � 1, then we have the following for any n > 0:

(1) There is a measure µn such that lim� µ
�,n = µn weakly for every sequence of

α-approximants.
(2) The measure µn is Gibbsian w.r.t. the potential Un.
(3) The interaction part of the potential fulfils

sup
x

∑
A�x

ea|A| sup
n

‖Ũn(A)‖ � 1. (3.54)

Proof. It relies on the generalization of lemma 3.2 to super-polymers. Establishing the
exponential damping of super-polymers, which is given in lemma 3.12, we can continue
according lines of section 3.4 without essential changes. �

3.6. Geometry of polymers

In this section, we prove the basic statements about the convergence of cluster expansions
formulated and exploited in last sections. Before that we need to extend a bit the notation
introduced in sections 3.3 and 3.4. For any set of interaction points, ! ⊂ �n, we define the
sets

B! = ∪(x,k)∈!(τx(B) ∩�){k − 1} (3.55)

and

B∗! = B!\{(x, k − 1); (x, k) ∈ !}. (3.56)

Further, !̄ = ! ∪B! is called the dependence set of !. Finally, for any spacetime point (x, k)
we use the symbol tx,k for the largest integer i � k such that (x, j) �∈ !̄ for any integer j
satisfying k < j < i. Note that tx,k = n whenever (x, k) belongs to the root set R(!). By
using these definitions and formula (3.15), we can sum out the spins in the set �n\!̄ and write
the unnormalized weight defined by (3.18) in the form

"�,nη0,ηn
(!) =

∑
η•(!̄)

∏
x∈�

(P0)
tx,0
η0(x),ηtx,0 (x)

∏
(x,k)∈B∗!

(P0)
tx,k−k
ηk(x),ηtx,k (x)

×
∏

(x,k)∈!

[
β�
x,k(ηk(x)

∣∣ηk−1)R
tx,k−k
ηk(x),ηtx,k (x)

]
(3.57)

the sum being taken over all configurations in the dependence set of ! which are consistent
with η0, ηn. Note that, for any point (x, k) ∈ !, the ‘free propagator’ P0 was replaced with
R due to (3.15), which is exponentially damped. This is the key observation which enables
us to find an estimate on polymer weights which is uniform in time. Namely, we state the
following:

Lemma 3.9. For any a � 0 there exists a constant τa > 0 such that whenever the condition
‖β�‖ � τaε0 is satisfied, then

sup
x

sup
n

∑
γ∈Kn

�

x∈P(γ )

e(1+a)|P(γ )| sup
η,η′

∣∣"̄�,nη,η′
∣∣ � 1. (3.58)
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Proof of lemma 3.9. In order to prove the lemma, we need to introduce a suitable geometrical
representation of polymers which is done in three steps.

Step 1: On any polymer γ we build the directed graph G(γ ) defined in such a way that
the set of vertices of G(γ ) is γ and the vertex (x, k) ∈ γ points to the vertex (y, l) ∈ γ iff
(x, tx,k) ∈ B{(y,l)}. It is obvious that any vertex points to at most one other vertex and the root
set is exactly the set of sites for which there is none. Since γ is a finite set, the root set cannot
be empty. Any polymer γ with just one root is called simple and it is easy to realize that the
graph G(γ ) of any simple polymer γ is a tree-graph. Any polymer γ may be uniquely written
as a disjoint union of simple polymers; let us write γ = {γα}. Note that the family of sets
{P(γα)} is a cluster. A set {γα} of simple polymers is called compatible iff there is a polymer
γ such that {γα} is the family of its simple parts.

Step 2: We say that the simple polymers γ1 and γ2 are equivalent if there exists an
isomorphism E between the directed graphs G(γ1) and G(γ2) such that E(x, k) = (y, l)

implies x = y for any vertices (x, k) ∈ γ1 and (y, l) ∈ γ2. It means that equivalent simple
polymers can differ only in time coordinates of interaction points. The classes of equivalent
simple polymers will be called skeletons and we will reserve the symbols S,S1, . . . for them.
Since the projection set P(γ ) is the same for all equivalent simple polymers, we can naturally
introduce the symbol P(S) for the projection of the skeleton S and, similarly, R(S) for the
root set.

Step 3: A collection of skeletons S = {Sα} is called a cluster whenever the corresponding
collection {P(Sα)} of sets is a cluster. We assign to it a graph of connectivity, H(S), in the
sense that the skeletons S1,S2 are connected by edge iff P(S1)P ∩ (S2) �= ∅. Since S is a
cluster, the graph H(S) is clearly connected.

By using equations (3.57) and (3.11) and the normalization condition
∑

b∈S(P
0)nab = 1, it

is not hard to realize that the following upper bound for the unnormalized weights holds true:

∣∣"�,nη,η′ (γ )
∣∣ � ∏

(x,k)∈R(γ )

(
‖β�‖

∑
a∈S

∣∣Rn−k
a,ηn(x)

∣∣)

×
∏

(x,k)∈γ \R(γ )

(
‖β�‖

∑
a,b∈S

∣∣Rtx,k−k
ab

∣∣) ∏
x∈�\γ

¯

(P0)nη0(x),ηn(x)

� (2‖β�‖)|γ |
∏

(x,k)∈γ
(1− 2ε)tx,k−k

∏
x∈�\γ

¯

(P0)nη0(x),ηn(x)
. (3.59)

A lower bound for the reference process is, due to (3.10),

"
�,n
η,η′ (∅) =

∏
x∈γ

¯

(P0)nη0(x),ηn(x)

∏
x∈�\γ

¯

(P0)nη0(x),ηn(x)

�
[ ε0

2ε
(1− (1− 2ε)n)

]|γ
¯
| ∏
x∈�\γ

¯

(P0)nη0(x),ηn(x)
. (3.60)

Therefore, we obtain the estimate for the (normalized) weight∣∣"̄�,nη,η′ (γ )
∣∣ � [ ε0

2ε
(1− (1− 2ε)n)

]−|γ
¯
|
(2‖β�‖)|γ |

∏
(x,k)∈γ

(1− 2ε)tx,k−k

�
∏
α

wn(γα) (3.61)
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where the last product runs over all simple parts of γ and we have defined

wn(γα) =
[

4ε

1− (1− 2ε)n
‖β�‖
ε0

]|γα | ∏
(x,k)∈γα

(1− 2ε)tx,k−k. (3.62)

So, we have restored the factorization of the polymer weights into its simple parts at least for
the above upper bound.

Going back to condition (3.58), we can use the above representation of polymers and
estimate the left-hand side as follows:∑
γ∈Kn

�

x∈P(γ )

e(1+a)|P(γ )| sup
η,η′

∣∣"̄nη,η′ (γ )∣∣ � ∑
{γα} comp
x∈⋃α P(γα)

∏
α

[
e(1+a)|P(γα)|wn(γα)

]

=
∑

{Sα} cluster
x∈⋃α P(Sα)

∑
{γα} comp
∀α:γα∈Sα

∏
α

[
e(1+a)|P(γα)|wn(γα)

]

�
∑
{Sα}

x∈⋃α P(Sα)

∏
α


e(1+a)|P(Sα)|

∑
γα∈Sα

wn(γα)


 (3.63)

where in the last inequality we estimated the sum over all compatible simple polymers by
omitting the condition of compatibility. To estimate the last sum, we can use (3.62) and write

∑
γα∈Sα

wn(γα) =
[

4ε

1− (1− 2ε)n
‖β�‖
ε0

]|Sα | ∑
γα∈Sα

∏
(x,k)∈γα

(1− 2ε)tx,k−k

�
[

4ε

1− (1− 2ε)n
‖β�‖
ε0

]|Sα | [n−1∑
l=0

(1− 2ε)l
]|Sα |

� (2τa)|Sα |. (3.64)

since ‖β�‖ � τaε0 by assumption. Note that the above upper bound does not depend on n,
which gives the uniformity in time. Substituting it into formula (3.63) and summing over
sequences of skeletons rather than their unordered collections, we obtain

∑
γ∈Kn

�

x∈P(γ )

e(1+a)|P(γ )| ∣∣"̄nη,η′ (γ )∣∣ �
∞∑
n=1

1

(n− 1)!

∑
S1,...,Sn cluster

x∈P(S1)

n∏
α=1

e(1+a)|P(Sα)|(2τa)|Sα |

�
∞∑
n=1

1

(n− 1)!

∑
Tn

∑
S1,...,Sn,x∈P(S1)

Tn⊂H(S1,...,Sn)

n∏
α=1

(
2τa e(1+a)b)|Sα |

. (3.65)

In the last expression, the second sum runs over all tree-graphs on the sequence {1, 2, . . . , n}.
We also used the estimate |P(Sα)| � b|Sα|; recall that b = |B| is the size of the dependence
set B of the perturbation β�. To finish the proof, we need the estimates contained in the
following lemmas:

Lemma 3.10. Provided that z � 0 and c > 1 are such that the inequality (1 + 2cbz)b � c is
satisfied, one has ∑

S:x∈P(S)

z|S| � cbz. (3.66)
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Lemma 3.11. If z(S) � 0 for all skeletons, then the inequality

∑
Tn

∑
S1,...,Sn;x∈P(S1)

Tn⊂H(S1,...,Sn)

n∏
α=1

z(Sα) �
1

2
(n− 2)!


sup

x

∑
S:x∈P(S)

(2e)|P(S)|z(S)



n

(3.67)

holds true for any n > 1.

Using these lemmas and a trivial estimate for n = 1, we immediately obtain

∑
γ∈Kn

�

x∈P(γ )

e(1+a)|P(γ )| sup
η,η′

∣∣"̄nη,η′ (γ )∣∣ � 1

2

∞∑
n=1


 ∑

S:x∈P(S)

(
2b e(2+a)bτa

)|S|
n

� b

2

∞∑
n=1

[
2be(2+a)bcbτa

]n � 1 (3.68)

provided that the conditions

[1 + 2τ̃ ]b � c
τ̃

1− τ̃
� 2 (3.69)

are satisfied with τ̃ = 2b e(2+a)bcbτa. Clearly, for any a � 0 and c > 1, the above conditions
are fulfilled by choosing τa small enough, which finishes the proof of inequality (3.58).

Proof of lemma 3.10. First of all, we can write the inequalities∑
S:x∈P(S)

z|S| �
∑

S:R(S)={x}
|P(S)|z|S| � b

2

∑
S:R(S)={x}

(2z)|S| (3.70)

where we used that

|P(S)| � b|S| � b2|S|−1. (3.71)

Recall that the root set,R(S), of any simple polymer S contains exactly one site. Let γ ∈ S be
any (simple) polymer from S and (x, k) ∈ γ be an interaction point. If (x1, k1), . . . , (xm, km)

is the (unique) sequence of interaction points from γ such that (xi, ki) points to (xi+1, ki+1)

for any i = 1, . . . ,m− 1 and (x1, k1) = (x, k) and (xm, km) is the root of γ , then we say that
(x, k) is of order m. The order of γ is defined as the maximal order of its interaction points.
It is evident that all polymers γ ∈ S are of the same order, so, we can consider it as the order
of the skeleton S. Let us define

Ym =
∑

S:R(S)={x}
order�m

(2z)|S|. (3.72)

To prove the lemma, it is sufficient to show that Ym � 2cz for all m � 1 provided that the
assumption of the lemma, (1 + 2cz)b � c, is satisfied. Proceeding by induction, let Yp � 2cz
for all p < m. Any skeleton S of order m is uniquely introduced by its root and by the
collection of skeletons {S1, . . . ,Sr} of orders� m− 1 and with roots x1, . . . , xr pointing to
the root x. Clearly, there are at most b possibilities for roots x1, . . . , xr and we can write the
inequalities

Ym � 2z
∑
Y⊂B

∏
y∈Y

Ym−1 = 2z(1 + Ym−1)
b � 2z(1 + 2cz)b � 2cz (3.73)

proving the lemma. �
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Proof of lemma 3.11. Following [12], chapter V, we distinguish tree-graphs according to the
multiplicities of vertices. According to the elementary graph theory, the sequence d1, . . . , dn
of multiplicities is an arbitrary sequence of positive integers satisfying

∑
i di = 2(n − 1).

Re-arranging the terms on the left-hand side of (3.67), we can write

LHS(3.67) =
∑

d1,...,dn�1∑
i di=2(n−1)

∑
Tn(d1,...,dn)

w(Tn | d1, . . . , dn) (3.74)

where the second sum runs over all tree-graphs Tn with the multiplicities d1, . . . , dn of its
vertices and

w(Tn | d1, . . . , dn) =
∑

S1,...,Sn;x∈P(S1)

Tn⊂H(S1,...,Sn)

n∏
α=1

z(Sα). (3.75)

To estimate that, we proceed as follows. Since Tn is a tree-graph, there exists (at least
one) vertex ᾱ �= 1 such that dᾱ = 1. Without any loss of generality we can assume that
ᾱ = n and, moreover, that the edge (n − 1, n) ∈ Tn. Therefore, removing the vertex n, we
obtain a tree-graph Tn−1 with multiplicities d1, . . . , dn−2, dn−1 − 1. Since by the assumption
P(Sn)∩P(Sn−1) �= ∅ to fit Tn, we can write the estimate

w(Tn | d1, . . . , dn) �
∑

S1,...,Sn−1;x∈P(S1)

Tn−1⊂H(S1,...,Sn−1)

n−1∏
α=1

z(Sα)|P(Sn−1)| sup
x

∑
S:x∈P(S)

z(S). (3.76)

Iterating this process, we arrive at the inequality

w(Tn | d1, . . . , dn) �


 ∑

S:x∈P(S)

|P(S)|d1z(S)


 n∏

α=2


sup

y

∑
S:y∈P(S)

|P(S)|dα−1z(S)


 .

(3.77)

Substituting it into (3.74) and by using Cayley’s formula for the number of tree-graphs with
fixed multiplicities of vertices,

#{Tn(d1, . . . , dn)} = (n− 2)!∏n
α=1(dα − 1)!

(3.78)

we immediately obtain

LHS(3.74) �
∞∑

d1,...,dn=1

(n− 2)!∏n
α=1(dα − 1)!

×

|P(S)|d1

∑
S:x∈P(S)

z(S)




sup

y

∑
S:y∈P(S)

|P(S)|dα−1z(S)



n−1

= (n− 2)!


 ∑

S:x∈P(S)

|P(S)| e|P(S)|z(S)




sup

y

∑
S:y∈P(S)

e|P(S)|z(S)



n−1

.

(3.79)

Now, the lemma follows by using the inequality |P(S)| � 2|P(S)|−1. �

The case of weakly correlated initial data requires a generalization of lemma 3.9 to super-
polymers, using the notation of section 3.5. Since the proof goes along the same lines, we
only sketch it.
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Lemma 3.12. Given a � 0, there exist constants τ ′a, υa > 0 such that the following is true. If
the condition

‖β�‖
τ ′aε0

+ sup
x

∑
A�x

eυa |A|
(
e‖V (A)‖ − 1

)
� 1 (3.80)

is satisfied, then

sup
x

sup
n

∑
〈!,A〉∈Kn

�

x∈P(〈!,A〉)

e(1+a)|P(〈!,A〉)| sup
η′

∣∣w�,n
η′ (〈!,A〉)∣∣ � 1. (3.81)

Proof. Using equation (3.48) and the fact that ν�,nη′ is a probabilistic measure, we can estimate
the weight of a super-polymer 〈!,A〉 by∣∣w�,n

η′ (〈!,A〉)∣∣ � sup
η

∏
γ∈!

∣∣"�,nη,η′ (γ )
∣∣ ∏
A∈A

(
e‖V (A)‖ − 1

)
. (3.82)

In order to fit it to the geometrical formalism of the proof of lemma 3.9, we only need to
generalize the notion of simple parts. A super-polymer 〈!,A〉 will be called simple whenever
either (i) ! is a simple polymer and A = ∅ or (ii) |A| = 1 and ! = ∅. Every super-polymer
may then be uniquely split into its simple parts. For ‘polymer-like’ simple parts the skeleton
representation is unchanged and, for convenience, we can include the sets A ∈ A into the
family of skeletons, defining formally P(A) = A. As a result, we can assign to any super-
polymer 〈!,A〉 a family S = {Sα}, where Sα stands either for a skeleton or for a set of
sites, and with the graph of connectivity, H(S), being connected. Repeating now the proof of
lemma 3.9, we evidently arrive at the following variant of (3.65):

∑
〈!,A〉∈Kn

�

x∈P(〈!,A〉)

ea|P(〈!,A〉)‖ sup
η′

∣∣w�,n
η′ (〈!,A〉)∣∣ � ∞∑

n=1

1

(n− 1)!

∑
Tn

∑
S1,...,Sn,x∈P(S1)

Tn⊂H(S1,...,Sn)

n∏
α=1

u(Sα)

(3.83)

where we have denoted

u(Sα) =
{(

2 eab ‖β
�‖
ε0

)|Sα | if Sα is a skeleton(
e‖V (Sα)‖ − 1

)
if Sα is a set of sites.

(3.84)

Applying again lemmas 3.10 and 3.11, the above expression may be further estimated by

1

2

∞∑
n=1


sup

x

∑
S:x∈P(S)

(2e)P(S)u(S)



n

� 1

2

∞∑
n=1

[
2b+1e(2+a)bcb

‖β�‖
ε0

+ sup
x

∑
A�x

(2e)|A|
(
e‖V (A)‖ − 1

)]n

(3.85)

from which the lemma immediately follows. �

4. Continuous time models

In this section, we study continuous time interacting particle systems, proving that all the
results of the last section keep valid. We follow two different approaches. First, we treat the
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continuous time limits of sequences of PCA, directly applying the above results. Second, we
develop a general perturbation framework for continuous time models based on the Dyson
equation which enables the results to be extended to a class of models not admitting any natural
discrete time approximation.

4.1. Continuous time limit of PCA

Throughout this section, we keep all the notation from the previous section. We consider a
spin–flip process on � = {−1,+1}Zd

with transition rates c(x, η) for all x ∈ Z
d and η ∈ �.

They are to be interpreted as the probability rates of flipping the spin at x provided that the
configuration is η.5 Restricting only to models with bounded rates, such a process may be
approximated by the discrete time PCA parametrized by δ > 0 small enough which has the
transition probabilities

pδ
x(a | η) = (1− δc(x, η))I[a=η(x)] + δc(x, η)I[a=−η(x)] (4.1)

replacing further the continuous time t with the integer n = [t/δ], see [7] for instance.
As a reference process, we take a system of uncoupled spin–flip processes with the

transition rates c(0)(x, η) = εη(x), where ε± > 0. After discretization (4.1) it may be cast in
the formalism of section 3.2 with the stochastic matrix P0,δ having form (3.5), where εδ± = δε±.
From here on the superscript δ will refer to the discrete time approximation with the parameter
δ. We assume the total spin–flip process to be a perturbation of the reference process and we
write the spin-flip rates in the form c = c(0) + c(1). Substituting this decomposition into (4.1),
one gets its discrete form (3.14) with the perturbation part

βδ
x(a | η) = δ

(
c(1)(x, η)I[a=−η(x)] − c(1)(x, η)I[a=η(x)]

)
. (4.2)

It has the norm ‖βδ‖ = δ
∥∥c(1)∥∥, where

∥∥c(1)∥∥ = supx,η
∣∣c(1)(x, η)∣∣.

From the δ-scaling of βδ and εδ± we immediately note that the condition
∥∥c(1)∥∥/ε0 � 1

with ε0 = min{ε−, ε+} characterizes the weak coupling regime for the (continuous time)
spin-flip process. Indeed, it implies the inequality ‖βδ‖/εδ0 � 1 for all δ which ensures a
full perturbation control of the discrete time approximating processes in the neighbourhood of
δ = 0. More precisely, all the statements of lemma 3.2 and thus proposition 3.5 and theorem 3.6
hold true uniformly in δ, provided that

∥∥c(1)∥∥ � τaε0.
The construction of the spin-flip process as the limit δ ↓ 0 of the approximating PCA is

the subject of the following proposition, the proof of which may be found in [7].

Proposition 4.1. For all t � 0, there exists the weak limit µt
η = limδ↓0 µ

δ,[t/δ]
η .

Our result is then the following:

Theorem 4.2. Let
∥∥c(1)∥∥ � τε0 with τ = τa , a > 0, being the constant from lemma 3.2. Then

for any η ∈ � and t > 0 one has:

(1) The measure µt
η is Gibbsian.

(2) The corresponding potential is exponentially decaying and given as Ut
η(A, η

′) =
limδ↓0 U

δ,[t/δ]
η (A, η′) with the limit taken in the sense of classes of physically equivalent

potentials (it means that every limit point of the RHS gives a potential of µt
η).

Remark 4.3. For simplicity, we restrict here only to fixed initial data. The similar statement
obviously holds also for weakly coupled initial data in the sense of section 3.5.

5 For a more general set-up see the next section or [6].
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Proof. (1) We use the notation σx
y = −σy if x = y and σx

y = σy otherwise, and also

µx(σ) = µ(σx). Let σ ∈ � and t > 0 be fixed. Since the marginal measure µδ,[t/δ]
η , δ > 0 is

Gibbsian with the potential Uδ,[t/δ]
η , we have

−log
dµδ,[t/δ],x

η

dµδ,[t/δ]
η

(η′) =
∑
A�x

(
Uδ,[t/δ]
η (A, η′x)− Uδ,[t/δ]

η (A, η′)
)

a.s. (4.3)

where the RHS defines a continuous version of the LHS and we use the symbol wδ,[t/δ],x
η for

it. Splitting it into the reference and the perturbation parts, the latter may be bounded due to
theorem 3.6 as ∣∣w̃δ,[t/δ],x

η (η′)
∣∣ � 2 sup

δ

sup
n

∑
A�x

sup
η,η′

∣∣Ũ δ,n
η (A, η′)

∣∣ � 2. (4.4)

As the reference part has a δ-uniform bound due to lemma 3.1, we get

sup
δ

sup
x

sup
η,η′

∣∣wδ,[t/δ],x
η (η′)

∣∣ <∞. (4.5)

for all t > 0. Similarly,∣∣wδ,[t/δ],x
η (η′�η

′′
�c )−wδ,[t/δ],x

η (η′)
∣∣ � 4 sup

δ

sup
n

∑
A�x
A�⊂�

sup
η,η′

∣∣Ũ δ,n
η (A, η′)

∣∣ (4.6)

which yields

lim
�

sup
δ

sup
x

sup
η,η′ ,η′′

∣∣wδ,[t/δ],x
η (η′�η

′′
�c )− wδ,[t/δ],x

η (η′)
∣∣ = 0. (4.7)

It follows from (4.5) and (4.7) that
{
w
δ,[t/δ],x
η (η′)

}
δ>0 is a uniformly bounded equicontinuous

family of functions of η′. By Ascoli’s theorem, it contains a uniformly convergent subsequence
(along a sequence δn ↓ 0) with limitwt,x

η (η′). To finish the proof thatµt
η is a Gibbsian measure,

it suffices to show thatwt,x
η defines a continuous version of dµt,x

η

/
dµt

η. Note that it also implies
that the limit wt,x

η (η′) does not depend on the subsequence. However, the above statement
follows from the following simple calculation (we omit the indices η and [t/δn]). For any
local function f we can write

µδn,x(f ) = µδn
(
f e−w

δn,x )
= µδn

(
f e−w

x )
+ µδn

(
f
[
e−w

δn,x − e−w
x ])

and by using proposition 4.1 and the bound∣∣µδn
(
f
[
e−w

δn,x − e−w
x ])∣∣ � ‖f ‖e‖wδn,x‖(e‖wδn,x−wx‖ − 1

)
n→∞−→ 0 (4.9)

we immediately obtain

µx(f ) = µ
(
f e−w

x )
. (4.10)

(2) As the existence of the limit U 0,t
η (A, η′) = limδ↓0 U

0,δ,[t/δ]
η (A, η′) is obvious from

lemma 3.1, it suffices to concentrate on the perturbation part of the potential. If we define the
norm of any potential V by6

‖V ‖a = sup
x

∑
A�x

ea|A| sup
η

|V (A, η)| (4.11)

for any a > 0, then {V ; ‖V ‖a � 1} is a compact Banach space, see [15] for instance. Using
the bound

∥∥Ũ δ,[t/δ]
η

∥∥ � 1 for all δ, one can choose a subsequence δn → 0 such that there is

the limit Ũ t
η = limn Ũ

δn,[t/δn]
η in norm (4.11). Theorem 4.17 and proposition 4.19 in [4] then

imply that Ut
η is the potential of the (limit) measure µt

η. �
6 Note that V (A) = 0 whenever the set A is not connected.
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4.2. General model

The configuration space of our model is � = {−1,+1}Zd

and its elements are denoted by
σ, η, . . . . Given a subset � ⊂ Z

d , the symbol σ� is the restriction of σ to the set �; the set of
all configurations in � is denoted by ��. A function f : �→ R is called local if it depends
only on the restrictions to a finite set D ⊂ Z

d ; the minimal set with this property is called
the dependence set and we use the symbol Df for it. The set of all local functions is denoted
by L.

First, we introduce the reference dynamics by choosing it as the system of uncoupled
spin-flip processes. Its generator is L(0) =∑

x L
(0)
x , where

L(0)
x f (σ ) = εσx (f (σ

x)− f (σ)) (4.12)

for any f ∈ L with spin-flip rates 0 < ε−, ε+ <∞. Let ε0 = min{ε−, ε+} and 2ε = ε− + ε+.
In the above formula, σx

y = −σy iff x = y and it is equal to σy otherwise.
As the perturbation, we consider a general class of processes allowing arbitrary many-spin

transformations provided they are ‘local enough’ and ‘weak enough’, see below the condition
in theorem 4.4. It is introduced by a collection of transition rates c(1)T (σ, η) � 0 for any
finite set T ⊂ Z

d and any configurations σ ∈ �, η ∈ �T . They are to be interpreted as the
rates at which the transition σ → ηT σT c occurs. We assume there is a map T → P(T ),
assigning to any finite set T a finite set P(T ) ⊃ T , such that c(1)T (σ, η) = c

(1)
T (σ ′, η) whenever

σP(T ) = σ ′P(T ). The norm of any transition rate c(1)T is defined by∥∥c(1)T

∥∥ = sup
σ,η

∣∣c(1)T (σ, η)
∣∣. (4.13)

For any function f ∈ L, let L(1)f =∑
T L

(1)
T f with

L
(1)
T f (σ ) =

∑
η∈�T

c
(1)
T (σ, η)[f (ηT σT c )− f (σ)]. (4.14)

The whole process under study is then defined by the operator L = L(0) + L(1) which may be
extended to a generator of a Markov semigroup, provided that certain conditions on transition
rates are satisfied, see [6] for details.

In place of working directly with the infinite-volume process, we construct its finite-
volume approximations, proceeding along the same lines as for the PCA. Given a finite
set �, we consider an interacting particle system on �� defined through the generator
L� = L(0) + L(1),�, where L(0) is unchanged and L(1),� is constructed from the transition
rates c

(1),�
T (σ, η) for every T ⊂ � and σ ∈ ��, η ∈ �T . We use S�(t) = exp(tL�)

for the corresponding semigroup. Let α � 1 be given. We say that the process in � is
an α-approximant of the infinite-volume process iff (1) c(1),�T (σ, η) = c

(1)
T (σ, η) whenever

P(T ) ⊂ � and (2)
∥∥c(1),�T

∥∥ � α
∥∥c(1)T

∥∥ for all T ⊂ �. Where it makes no confusion, we will
mostly omit the superscript �.

Before stating our theorem, we need to introduce the following notation. A set A ⊂ Z
d

is said to be connected if one cannot write A = A1 ∪ A2 with A1,2 �= ∅ and d(A1, A2) > 1.
Here we use the metric d(x, y) = maxi |xi − yi|. For any set A ⊂ Z

d we define its connected
size by

|A|con = inf
A′⊃A

A′connected

|A′|. (4.15)

Theorem 4.4. There are constants τ, ς > 0 such that whenever the condition

sup
x

∑
T :x∈P(T )

eς |P(T )|con[
ε0
2ε (1− e−2εt0)

]|T |−1

α
∥∥c(1)T

∥∥
τε0

� 1 (4.16)
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is true for some time t0 � 0, then one has the following:

(1) For every initial configuration σ ∈ � and time t > t0, there exists a unique measure µt
σ

such that lim� δσ�S�(t) = µt
σ weakly for any sequence of α-approximants.

(2) The measureµt
σ is Gibbsian with a potential exponentially decaying in the connected size

(4.15), uniformly in � t0 + ε, ε > 0.

Remark 4.5. Our condition (4.16) is actually stronger than the condition for the uniform
exponential ergodicity, see [6] for a standard argument. Using this and part 2 of the theorem,
the argument in the proof of theorem 4.2 immediately gives the Gibbsianness of the invariant
measure. With some additional effort, one can also prove the exponential convergence of the
potential in the limit t ↑ ∞.

Remark 4.6. A generalization of the theorem to allow high-temperature initial data also holds.
Recalling the notation from section 3.5, condition (4.16) gets the general form

sup
x

[ ∑
T :x∈P(T )

eς |P(T )|con[
ε0
2ε (1− e−2εt )

]|T |−1

α
∥∥c(1)T

∥∥
τε0

+
∑
A�x

eυ|A|
(
e‖V (A)‖ − 1

)]
� 1 (4.17)

where V is the potential of the initial Gibbs measure. Since the formalism of super-polymers
introduced in section 3.5 works here without any essential changes, we will only concentrate
on the proof of theorem 4.4.

4.3. Dyson expansion

In what follows, let a finite volume � ⊂ Z
d and a time t > 0 be fixed. The semigroup S(t) is

the solution of the Dyson equation (sometimes also referred to as the Duhamel formula),

S(t) = S(0)(t) +
∫ t

0
dτS(τ )L(1)S(0)(t − τ ). (4.18)

By iterating it and splitting the generator L(1) into the sum of local contributions, we arrive at
the Dyson series (note that there is no convergence problem for finite-dimensional operators)

S(t) =
∞∑
n=0

∑
T1,...,Tn

∫ t

0
dt1

∫ t

t1

dt2 · · ·
∫ t

tn−1

d tn S(0)(t1)L
(1)
T1
S(0)(t2 − t1)L

(1)
T2
· · ·L(1)

Tn
S(0)(t − tn).

(4.19)

Any finite sequence ! = [T1, t1; T2, t2; . . . ; Tn, tn] will be called an interaction set, whenever
T1, . . . , Tn ⊂ � and 0 � t1 � t2 � · · · � tn � t . Assigning to it the unnormalized weight by7

ρ([T1, t1; . . . ; Tn, tn]) = S(0)(t1)L
(1)
T1
S(0)(t2 − t1)L

(1)
T2
· · ·L(1)

Tn
S(0)(t − tn) (4.20)

we can formally write series (4.19) in the form

S(t) =
∫

D!ρ(!) (4.21)

where we have introduced the notation∫
D! ≡

∞∑
n=0

∑
T1,...,Tn

∫ t

0
d t1

∫ t

t1

dt2 · · ·
∫ t

tn−1

dtn. (4.22)

If it is necessary to indicate the dependence on the volume � and the time t, we use the
extended notation for the weight, ρ�(!; t). The matrix elements of the operator S(t) in the
7 Note that the unnormalized weight is defined as an operator on C(��).
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natural basis, Sσ,η(t) = δσS(t)1η, have the interpretation of the probabilities of finding the
configuration η at time t, starting from the configuration σ at time zero. Here δσ is the measure
concentrated on σ and 1η(η′) = 1 for η′ = η and 0 otherwise. We introduce the (normalized )
operator S̄(t) by its matrix elements S̄σ,η(t) = Sσ,η(t)

S
(0)
σ,η(t)

. Similarly, we assign to any interaction

set ! the (normalized ) weight ρ̄(!) with ρ̄σ,η(!) = ρσ,η(!)

S
(0)
σ,η(t)

.

Given an interaction set ! = [T1, t1; T2, t2; . . . ; Tn, tn], we define its support, !
¯
=⋃

k Tk,
and the projection set, P(!) = ⋃

k P(Tk). We say that ! is connected whenever it cannot
be split into two non-empty interaction sets !1 and !2 such that P(!1) ∩ P(!2) �= ∅. As in
the case of PCA, we divide interaction sets into ‘essentially independent’ parts which allow
for a well-controlled cluster expansion. In order to avoid additional technicalities, we define
polymers as subsets of Z

d . We start with the observation that the normalized weight ρ̄(!) of
any interaction set! factorizes into the product over all connected components of!. Indeed, if
{γi} is the family of connected components of !, then formula (4.20) reads, writing explicitly
the dependence on the volume,

ρ�(!) = S
(0)
�\P(!)(t)⊗

⊗
i

ρP(γi )(γi). (4.23)

It immediately follows that ρ̄(!) = ⊗
i ρ̄(γi) and also ρ̄�(!) = ρ̄P(!) ⊗ 1l�\P(!). Defining

for any set M ⊂ � the (normalized) weight "̄(M) = "̄(M; t) by

"̄(M; t) =
∫

! connected
P(!)∩�=M

D!ρ̄(!; t) (4.24)

we can write the normalized semigroup S̄(t) as

S̄(t) =
∑
M

∏
M∈M

"̄(M) (4.25)

where the sum runs over all disjoint collections of subsets of �. So, we have obtained the
expansion of the semigroup in the form of a polymer model with the polymers being finite
subsets of� and with the compatibility defined as the disjointness of sets. Note that the weight
of the empty set has matrix elements "̄σ,η(∅) = 1. The cluster expansion

log S̄σ,η(t) =
∑
M

"̄Tσ,η(M) (4.26)

with the sum running over all clusters of polymers in � and "̄T (M) being the weight of the
cluster M, allows the marginal measure δσ S(t) to be written in the Gibbs form

(δσS(t))(η) = S(0)σ,η(t) e−
∑

A U
t
σ (A,η). (4.27)

Here, the reference semigroup S(0)(t) has a simple product structure and the interacting part
of the potential is

Ut
σ (A, η) = −

∑
M:

⋃
M∈MM=A

"̄Tσ,η(M). (4.28)

Note that the potential Ut
σ (A) depends on the volume � as long as this � is still not large

enough.
Defining the operator norm

‖O‖ = sup
σ,η

|Oσ,η| (4.29)

for any operator on C(��), we have the following statement about the convergence of cluster
expansions:
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Lemma 4.7. Given a � 0, there are constants τa, ςa > 0 such that the condition

sup
x

∑
T :x∈P(T )

eςa |P(T )|con[
ε0
2ε (1− e−2εt0)

]|T |−1

∥∥c(1)T

∥∥
τaε0

� 1 (4.30)

satisfied with some t0 � 0 implies the bound

sup
x

sup
t>t0

∑
M:x∈∪M∈MM

ea|M|con‖"̄T (M; t)‖ � 1 (4.31)

where the sum runs over all clusters in the volume � and in the time interval [0, t]. We also
used the notation |M|con =

∑
M∈M |M|con.

4.4. Sketch of proofs

The proof of theorem 4.4 is based on lemma 4.7 and both go along the same lines as in the
case of PCA. That is why we only sketch the main ideas of the proof of lemma 4.7 and then
we recall section 3.4.

In what follows, we use the ‘canonical’ notation ! = [T1, t1; . . . ; Tn, tn]. We represent it
by building on ! a directed graph G(!) with k � l iff (1) k < l, (2) Tk∩P(Tl) �= ∅, and (3)
k < k′ < l ⇒ Tk ∩ P(T ′k) = ∅. Every vertex can only point to one another and if it points
to none, than it is called a root. We use the notation t̄k = tl − tk iff k � l and t̄k = t − tk
whenever k is a root. By repeating the construction from section 3.6, we also define skeletons
as the natural equivalence classes of interaction sets with exactly one root.

Introducing the notation R(0)
T (t) = S

(0)
T (t)− S

(0)
T (∞), we first observe that R(0)

T (t)1 = 0,
which implies R

(0)
T (t)S

(0)
T (t ′) = R

(0)
T (t + t ′). Further, L(1)

T 1 = 0 and, as a consequence,
L
(1)
T S

(0)
T (t) = L

(1)
T R

(0)
T (t). By using this, the unnormalized weight (4.20) may be written in

the form

ρ(!) = S
(0)
� (t1)L

(1)
T1
R
(0)
T1
(t2 − t1)⊗ S

(0)
�\T1

(t2 − t1)L
(1)
T2
R
(0)
T2
(t3 − t2)⊗ S

(0)
�\T2

(t3 − t2)L
(1)
T3
. . .

(4.32)

which may be further simplified as k � l implies

L
(1)
Tk
R
(0)
Tk
(tk+1 − tk)S

(0)
Tk
(tk+2 − tk+1) . . . S

(0)
Tk
(tl − tl−1) = L

(1)
Tk
R
(0)
Tk
(tl − tk). (4.33)

In words, every operator in (4.20) of the form S
(0)
Tk
(t̄k) may be replaced with R(0)

Tk
(t̄k); compare

with (3.57).

Proof of lemma 4.7. Recalling a standard argument for the convergence of cluster expansions,
see [5], it suffices to prove the bound

sup
x

sup
t>t0

∑
M :x∈M

e(1+a)|M |con‖"̄(M; t)‖ � 1 (4.34)

where the sum runs over all polymers in� and [0, t], which further follows from the inequality

sup
x

sup
t>t0

∫
! connected
P(!)�x

D! e(1+a)|P(!)|con‖ρ̄(!; t)‖ � 1. (4.35)

By using (4.32) and (4.33), and the inequality ‖O�O′�‖ � 2|�|‖O�‖‖O′�‖, one can estimate
the unnormalized weight as

|[ρ(!)]σ,η| �
[
S
(0)
�\!

¯
(t)

]
σ,η

∏
k root

2|Tk |
∥∥L(1)

Tk

∥∥∥∥R(0)
Tk
(t̄k)

∥∥ ∏
k not root

22|Tk|∥∥L(1)
Tk

∥∥∥∥R(0)
Tk
(t̄k)

∥∥ (4.36)



3076 C Maes and K Netočný

and, realizing that
∥∥L(1)

T

∥∥ � 2|T |
∥∥c(1)T

∥∥, the normalized weight is bounded by

‖ρ̄(!)‖ �
n∏

k=1

(
23|Tk|∥∥c(1)Tk

∥∥ ∥∥R(0)
Tk
(t̄k)

∥∥
infσ,η

[
S
(0)
Tk
(t)

]
σ,η

)
. (4.37)

Following the strategy of section 3.6, one can sum over all interaction sets with a family of
skeletons fixed to get, cf equations (3.63) and (3.64),∫

! connected
x∈P(!)

D! e(1+a)|P(!)|con‖ρ̄(!)‖

�
∑

{Sα} cluster
x∈⋃α P(Sα)

∏
α

[
e(1+a)|P(Sα)|con

∏
T∈Sα

23|T |∥∥c(1)T

∥∥ ∫ t

0
d t̄

∥∥R(0)
T (t̄ )

∥∥
infσ,η

[
S
(0)
T (t)

]
σ,η

]

�
∑

{Sα} cluster
x∈⋃α P(Sα)

∏
α

∏
T ∈Sα

[
eς̃a |P(T )|con[

ε0
2ε (1− e−2εt )

]|T |−1

∥∥c(1)T

∥∥
ε0

]
(4.38)

where ς̃a > 0 is a large enough constant and the integration was carried out by using the
following lemma.

Lemma 4.8. For any finite set T and any t > 0 one has∫ t

0
dt̄

∥∥R(0)
T (t̄)

∥∥
infσ,η

[
S
(0)
T (t)

]
σ,η

� 2|T |

ε0
[
ε0
2ε (1− e−2εt )

]|T |−1 . (4.39)

Proof. A simple calculation gives, compare equations (3.8) and (3.9),

S
(0)
{x}(∞) = 1

2ε

(
ε− ε+

ε− ε+

)
(4.40)

and

R
(0)
{x}(t) =

1

2ε

(
ε+e−2εt −ε+e−2εt

−ε−e−2εt ε−e−2εt

)
. (4.41)

So, one has infσ,η
[
S
(0)
{x}(t)

]
σ,η
= ε0

2ε (1− e−2εt ) and
∥∥R(0)

{x}(t)
∥∥ � e−2εt . Further,

∥∥R(0)
T (t)

∥∥ =
∥∥∥∥∥
⊗
x∈T

[
S
(0)
{x}(∞) + R

(0)
{x}(t)

]
−
⊗
x∈T

S
(0)
{x}(∞)

∥∥∥∥∥
�

∑
∅�=T ′⊂T

∏
x∈T ′

∥∥R(0)
{x}(t)

∥∥ ∏
y∈T \T ′

∥∥S(0){y}(∞)
∥∥

� 2|T | sup
x∈T

∥∥R(0)
{x}(t)

∥∥ � 2|T |e−2εt (4.42)

and the proof is finished after integrating over time. �

The rest of the proof of inequality (4.35) only consists in geometrical estimates in the
spirit of section 3.6.
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Proof of theorem 4.4. (1) It follows directly from lemma 4.7 by using the methods of section
3.4.1. We only remark that the technical lemma 3.3 must be suitably changed in this case.
Here, one can prove the following representation of expectations:

δσS(t)f =
∑
η

f (η)S(0)σ,η(t) exp


 ∑

M;∀M∈M:
M∩Df �=∅

"̄Tσ,η(M)


 (4.43)

where the sum runs over all clusters which contain only polymers intersecting the dependence
set of f , cf equation (3.25).

(2) The proof of the Gibbsianness of the measure δσ S(t) goes along the lines of section
3.4.2. Namely, it has the potential defined by (4.27) and (4.28), the perturbation part of which
satisfies

sup
x

∑
A�x

ea|A|con sup
t>t0

sup
σ

∥∥Ut
σ (A)

∥∥ � 1. (4.44)

We only add the remark that the part of the potential which corresponds to the reference process
is not bounded uniformly in time in the neighbourhood of t = 0. �
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[5] Kotecký R and Preiss D 1986 Cluster expansions for abstract polymer models Commun. Math. Phys. 103 491–8
[6] Liggett T M 1985 Interacting Particle Systems (Berlin: Springer)
[7] Maes C 1993 Coupling interacting particle systems Rev. Math. Phys. 5 457–75
[8] Maes C 2002 Weakly Gibbsian fields, how strong? Proc. 13th Int. Cong. of Mathematical Physics (London,

2000) at press
[9] Maes C and Velde K V 1993 The interaction potential of the stationary measure of a high-noise spinflip process.

J. Math. Phys. 34 3030–8
[10] Malyshev V A and Minlos R A 1991 Gibbs Random Fields, Cluster Expansions (Dordrecht: Kluwer)
[11] Pirogov S A 1986 Cluster decompositions for automata systems Probl. Pereda. Inf. 22 60–6
[12] Simon B 1993 The Statistical Mechanics of Lattice Gases (Princeton, NJ: Princeton University Press)
[13] Toom A L, Vasilyev N B, Stavskaya O N, Mityushin L G, Kurdyumov G L and Pirogov S A 1990 Discrete

local Markov systems Stochastic Cellular Systems: Ergodicity, Memory, Morphogenesis ed R L Dobrushin,
V I Kryukov and A L Toom (Manchester: Manchester University Press) pp 1–182

[14] van Enter A C D, Fernández R, den Hollander F and Redig F 2001 Possible loss and recovery of Gibbsianness
during the stochastic evolution of Gibbs measures Preprint mp arc 01-200 (Commun. Math. Phys. at press)

[15] van Enter A C D, Fernández R and Sokal A D 1993 Regularity properties and pathologies of position-space
renormalization-group transformations: scope and limitations of Gibbsian theory J. Stat. Phys. 72 879–1167
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